如何进行生存分析
引入R包
library("fromto")
准备示例数据
n_samples = 100 data = data.frame( time = sample(1:500, n_samples, replace = TRUE), # survival time status = sample(0:1, n_samples, replace = TRUE), # survival(0 = not occur,1 = occur) gene1 = rnorm(n_samples), # gene1 expression gene2 = rnorm(n_samples), # gene2 expression gene3 = rnorm(n_samples), # gene3 expression gene4 = rnorm(n_samples), # gene4 expression gene5 = rnorm(n_samples), # gene5 expression gene6 = rnorm(n_samples), # gene6 expression gene7 = rnorm(n_samples), # gene7 expression gene8 = rnorm(n_samples), # gene8 expression gene9 = rnorm(n_samples), # gene9 expression gene10 = rnorm(n_samples), # gene10 expression gene11 = rnorm(n_samples) # gene11 expression )
survival_unicox函数执行单因素cox生存分析
res_unicox = survival_unicox(data)
survival_multicox函数执行多因素cox生存分析
res_multicox = survival_multicox(data)
fplot1函数森林图可视化cox分析结果
fplot1(res_unicox,nameplot = "res_unicox", height = 10)
fplot2函数森林图可视化cox分析结果
res_multicox$dataset = "TCGA" fplot2(res_multicox,nameplot = "mutli_unicox", height = 10)
kmplot1函数执行km生存分析与log-rank检验
kmplot1(data, minprop = 0.3, GeneName = "gene3", CancerType = "unknown", Timeunit = "day")